

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Changelog

All notable changes to this project will be documented in this file.

The format is based on [Keep a Changelog][kac] and this project adheres to
[Semantic Versioning][semver].

[kac]: https://keepachangelog.com/en/1.0.0/
[semver]: https://semver.org/

[1.2.1] - 2020-07-06

Added
* JUnit output and extensible formatter rewrite (#246)
* load function now reads from absolute and relative paths, and $PATH (#282)
* Beginner-friendly examples in /docs/examples (#243)
* @peshay’s bats-file fork contributed to bats-core/bats-file (#276)

Changed
* Duplicate test names now error (previous behaviour was to issue a warning) (#286)
* Changed default formatter in Docker to pretty by adding ncurses to Dockerfile, override with –tap (#239)
* Replace “readlink -f” dependency with Bash solution (#217)

[1.2.0] - 2020-04-25

Support parallel suite execution and filtering by test name.

Added
* docs/CHANGELOG.md and docs/releasing.md (#122)
* The -f, –filter flag to run only the tests matching a regular expression (#126)
* Optimize stack trace capture (#138)
* –jobs n flag to support parallel execution of tests with GNU parallel (#172)

Changed
* AppVeyor builds are now semver-compliant (#123)
* Add Bash 5 as test target (#181)
* Always use upper case signal names to avoid locale dependent err… (#215)
* Fix for tests reading from stdin (#227)
* Fix wrong line numbers of errors in bash < 4.4 (#229)
* Remove preprocessed source after test run (#232)

[1.1.0] - 2018-07-08

This is the first release with new features relative to the original Bats 0.4.0.

Added
* The -r, –recursive flag to scan directory arguments recursively for

*.bats files (#109)

	The contrib/rpm/bats.spec file to build RPMs (#111)

Changed
* Travis exercises latest versions of Bash from 3.2 through 4.4 (#116, #117)
* Error output highlights invalid command line options (#45, #46, #118)
* Replaced echo with printf (#120)

Fixed
* Fixed BATS_ERROR_STATUS getting lost when bats_error_trap fired multiple

times under Bash 4.2.x (#110)

	Updated bin/bats symlink resolution, handling the case on CentOS where
/bin is a symlink to /usr/bin (#113, #115)

[1.0.2] - 2018-06-18

	Fixed sstephenson/bats#240, whereby skip messages containing parentheses
were truncated (#48)

	Doc improvements:
* Docker usage (#94)
* Better README badges (#101)
* Better installation instructions (#102, #104)

	Packaging/installation improvements:
* package.json update (#100)
* Moved libexec/ files to libexec/bats-core/, improved install.sh (#105)

[1.0.1] - 2018-06-09

	Fixed a BATS_CWD bug introduced in #91 whereby it was set to the parent of
PWD, when it should’ve been set to PWD itself (#98). This caused file
names in stack traces to contain the basename of PWD as a prefix, when the
names should’ve been purely relative to PWD.

	Ensure the last line of test output prints when it doesn’t end with a newline
(#99). This was a quasi-bug introduced by replacing sed with while in #88.

[1.0.0] - 2018-06-08

1.0.0 generally preserves compatibility with 0.4.0, but with some Bash
compatibility improvements and a massive performance boost. In other words:

	all existing tests should remain compatible

	tests that might’ve failed or exhibited unexpected behavior on earlier
versions of Bash should now also pass or behave as expected

Changes:

	Added support for Docker.

	Added support for test scripts that have the [unofficial strict
mode](http://redsymbol.net/articles/unofficial-bash-strict-mode/) enabled.

	Improved stability on Windows and macOS platforms.

	Massive performance improvements, especially on Windows (#8)

	Workarounds for inconsistent behavior between Bash versions (#82)

	Workaround for preserving stack info after calling an exported function under
Bash < 4.4 (#87)

	Fixed TAP compliance for skipped tests

	Added support for tabs in test names.

	bin/bats and install.sh now work reliably on Windows (#91)

[0.4.0] - 2014-08-13

	Improved the display of failing test cases. Bats now shows the source code of
failing test lines, along with full stack traces including function names,
filenames, and line numbers.

	Improved the display of the pretty-printed test summary line to include the
number of skipped tests, if any.

	Improved the speed of the preprocessor, dramatically shortening test and suite
startup times.

	Added support for absolute pathnames to the load helper.

	Added support for single-line @test definitions.

	Added bats(1) and bats(7) manual pages.

	Modified the bats command to default to TAP output when the $CI variable
is set, to better support environments such as Travis CI.

[0.3.1] - 2013-10-28

	Fixed an incompatibility with the pretty formatter in certain environments
such as tmux.

	Fixed a bug where the pretty formatter would crash if the first line of a test
file’s output was invalid TAP.

[0.3.0] - 2013-10-21

	Improved formatting for tests run from a terminal. Failing tests are now
colored in red, and the total number of failing tests is displayed at the end
of the test run. When Bats is not connected to a terminal (e.g. in CI runs),
or when invoked with the –tap flag, output is displayed in standard TAP
format.

	Added the ability to skip tests using the skip command.

	Added a message to failing test case output indicating the file and line
number of the statement that caused the test to fail.

	Added “ad-hoc” test suite support. You can now invoke bats with multiple
filename or directory arguments to run all the specified tests in aggregate.

	Added support for test files with Windows line endings.

	Fixed regular expression warnings from certain versions of Bash.

	Fixed a bug running tests containing lines that begin with -e.

[0.2.0] - 2012-11-16

	Added test suite support. The bats command accepts a directory name
containing multiple test files to be run in aggregate.

	Added the ability to count the number of test cases in a file or suite by
passing the -c flag to bats.

	Preprocessed sources are cached between test case runs in the same file for
better performance.

[0.1.0] - 2011-12-30

	Initial public release.

[Unreleased]: https://github.com/bats-core/bats-core/compare/v1.1.0…HEAD [https://github.com/bats-core/bats-core/compare/v1.1.0...HEAD]
[1.1.0]: https://github.com/bats-core/bats-core/compare/v1.0.2…v1.1.0 [https://github.com/bats-core/bats-core/compare/v1.0.2...v1.1.0]
[1.0.2]: https://github.com/bats-core/bats-core/compare/v1.0.1…v1.0.2 [https://github.com/bats-core/bats-core/compare/v1.0.1...v1.0.2]
[1.0.1]: https://github.com/bats-core/bats-core/compare/v1.0.0…v1.0.1 [https://github.com/bats-core/bats-core/compare/v1.0.0...v1.0.1]
[1.0.0]: https://github.com/bats-core/bats-core/compare/v0.4.0…v1.0.0 [https://github.com/bats-core/bats-core/compare/v0.4.0...v1.0.0]
[0.4.0]: https://github.com/bats-core/bats-core/compare/v0.3.1…v0.4.0 [https://github.com/bats-core/bats-core/compare/v0.3.1...v0.4.0]
[0.3.1]: https://github.com/bats-core/bats-core/compare/v0.3.0…v0.3.1 [https://github.com/bats-core/bats-core/compare/v0.3.0...v0.3.1]
[0.3.0]: https://github.com/bats-core/bats-core/compare/v0.2.0…v0.3.0 [https://github.com/bats-core/bats-core/compare/v0.2.0...v0.3.0]
[0.2.0]: https://github.com/bats-core/bats-core/compare/v0.1.0…v0.2.0 [https://github.com/bats-core/bats-core/compare/v0.1.0...v0.2.0]
[0.1.0]: https://github.com/bats-core/bats-core/commits/v0.1.0

 # Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience,
nationality, personal appearance, race, religion, or sexual identity and
orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or

advances
* Trolling, insulting/derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others’ private information, such as a physical or electronic

address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting one of the current [project maintainers](#project-maintainers) listed below. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Project Maintainers

Current Maintainers

	[Bianca Tamayo][bt-gh]

	[Mike Bland][mb-gh]

	[Jason Karns][jk-gh]

	[Andrew Martin][am-gh]

Past Maintainers

	Sam Stephenson <<sstephenson@gmail.com>> (Original author)

Attribution

This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
available at [http://contributor-covenant.org/version/1/4][version]

[bt-gh]: https://github.com/btamayo
[mb-gh]: https://github.com/mbland
[jk-gh]: https://github.com/jasonkarns
[am-gh]: https://github.com/sublimino

[homepage]: https://contributor-covenant.org
[version]: https://contributor-covenant.org/version/1/4/

 # Contributing Guidelines

Welcome!

Thank you for considering contributing to the development of this project’s
development and/or documentation. Just a reminder: if you’re new to this project
or to OSS and want to find issues to work on, please check the following labels
on issues:

	[help wanted][helpwantedlabel]

	[docs][docslabel]

	[good first issue][goodfirstissuelabel]

[docslabel]: https://github.com/bats-core/bats-core/labels/docs
[helpwantedlabel]: https://github.com/bats-core/bats-core/labels/help%20wanted
[goodfirstissuelabel]: https://github.com/bats-core/bats-core/labels/good%20first%20issue

To see all labels and their meanings, [check this wiki page][labelswiki].

This guide borrows heavily from [@mbland’s go-script-bash][gsb] (with some
sections directly quoted), which in turn was
drafted with tips from [Wrangling Web Contributions: How to Build
a CONTRIBUTING.md][moz] and with some inspiration from [the Atom project’s
CONTRIBUTING.md file][atom].

[gsb]: https://github.com/mbland/go-script-bash/blob/master/CONTRIBUTING.md
[moz]: https://mozillascience.github.io/working-open-workshop/contributing/
[atom]: https://github.com/atom/atom/blob/master/CONTRIBUTING.md

[labelswiki]: https://github.com/bats-core/bats-core/wiki/GitHub-Issue-Labels

Table of contents

	[Contributing Guidelines](#contributing-guidelines)
* [Welcome!](#welcome)
* [Table of contents](#table-of-contents)
* [Quick links <g-emoji alias=”link” fallback-src=”https://assets-cdn.github.com/images/icons/emoji/unicode/1f517.png” ios-version=”6.0”>🔗</g-emoji>](#quick-links-)
* [Contributor License Agreement](#contributor-license-agreement)
* [Code of conduct](#code-of-conduct)
* [Asking questions and reporting issues](#asking-questions-and-reporting-issues)
* [Updating documentation](#updating-documentation)
* [Environment setup](#environment-setup)
* [Workflow](#workflow)
* [Testing](#testing)
* [Coding conventions](#coding-conventions)

	[Formatting](#formatting)

	[Naming](#naming)

	[Function declarations](#function-declarations)

	[Variable and parameter declarations](#variable-and-parameter-declarations)

	[Command substitution](#command-substitution)

	[Process substitution](#process-substitution)

	[Conditionals and loops](#conditionals-and-loops)

	[Generating output](#generating-output)

	[Gotchas](#gotchas)

	[Open Source License](#open-source-license)

	[Credits](#credits)

Quick links 🔗

	[Gitter channel →][gitterurl]: These messages sync with the IRC channel

	[IRC Channel (#bats on freenode) →][ircurl]: These messages sync with Gitter

	[README →][README]

	[Code of conduct →][CODE_OF_CONDUCT]

	[License information →][LICENSE]

	[Original repository →][repohome]

	[Issues →][repoissues]

	[Pull requests →][repoprs]

	[Milestones →][repomilestones]

	[Projects →][repoprojects]

[README]: https://github.com/bats-core/bats-core/blob/master/README.md
[CODE_OF_CONDUCT]: https://github.com/bats-core/bats-core/blob/master/docs/CODE_OF_CONDUCT.md
[LICENSE]: https://github.com/bats-core/bats-core/blob/master/LICENSE.md

Contributor License Agreement

Per the [GitHub Terms of Service][gh-tos], be aware that by making a
contribution to this project, you agree:

	to license your contribution under the same terms as [this project’s
license][osmit], and

	that you have the right to license your contribution under those terms.

	See also: [“Does my project need an additional contributor agreement? Probably
	not.”][cla-needed]

[gh-tos]: https://help.github.com/articles/github-terms-of-service/#6-contributions-under-repository-license
[osmit]: #open-source-license
[cla-needed]: https://opensource.guide/legal/#does-my-project-need-an-additional-contributor-agreement

Code of conduct

Harrassment or rudeness of any kind will not be tolerated, period. For
specifics, see the [CODE_OF_CONDUCT][] file.

Asking questions and reporting issues

Asking questions

Please check the [README][] or existing [issues][repoissues] first.

If you cannot find an answer to your question, please feel free to hop on our
[gitter][gitterurl] [![Gitter](https://badges.gitter.im/bats-core/bats-core.svg)](https://gitter.im/bats-core/bats-core?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge) or [via IRC (#bats on freenode)][ircurl].

Reporting issues

Before reporting an issue, please use the search feature on the [issues
page][repoissues] to see if an issue matching the one you’ve observed has already
been filed.

Updating or filing a new issue

Information to include

Try to be as specific as possible about your environment and the problem you’re
observing. At a minimum, include:

Installation issues

1. State the version of Bash you’re using bash –version
1. State your operating system and its version
1. If you’re installing through homebrew, run brew doctor, and attach the
output of brew info bats-core

Bugs/usage issues

1. State the version of Bash you’re using bash –version
1. State your operating system and its version
1. Command line steps or code snippets that reproduce the issue
1. Any apparently relevant information from the [Bash changelog][bash-changes]

[bash-changes]: https://tiswww.case.edu/php/chet/bash/CHANGES

Also consider using:

	Bash’s time builtin to collect running times

	a regression test to add to the suite

	memory usage as reported by a tool such as
[memusg](https://gist.github.com/netj/526585)

On existing issues

1. DO NOT add a +1 comment: Use the reactions provided instead
1. DO add information if you’re facing a similar issue to someone else, but
within a different context (e.g. different steps needed to reproduce the issue
than previous stated, different version of Bash or BATS, different OS, etc.)
You can read on how to do that here: [Information to include][#information-to-include]
1. DO remember that you can use the Subscribe button on the right side of the
page to receive notifications of further conversations or a resolution.

Updating documentation

We love documentation and people who love documentation!

If you love writing clear, accessible docs, please don’t be shy about pull
requests. Remember: docs are just as important as code.

Also: _no typo is too small to fix!_ Really. Of course, batches of fixes are
preferred, but even one nit is one nit too many.

Environment setup

Make sure you have Bash installed per the [Environment setup in the
README][env-setup].

[env-setup]: https://github.com/bats-core/bats-core/blob/master/README.md#environment-setup

Workflow

The basic workflow for submitting changes resembles that of the [GitHub Git
Flow][github-flow] (a.k.a. GitHub Flow), except that you will be working with
your own fork of the repository and issuing pull requests to the original.

[github-flow]: https://guides.github.com/introduction/flow/

1. Fork the repo on GitHub (look for the “Fork” button)
1. Clone your forked repo to your local machine
1. Create your feature branch (git checkout -b my-new-feature)
1. Develop _and [test](#testing)_ your changes as necessary.
1. Commit your changes (git commit -am ‘Add some feature’)
1. Push to the branch (git push origin my-new-feature)
1. Create a new [GitHub pull request][gh-pr] for your feature branch based

against the original repository’s master branch

	If your request is accepted, you can [delete your feature branch][rm-branch]
and pull the updated master branch from the original repository into your
fork. You may even [delete your fork][rm-fork] if you don’t anticipate making
further changes.

[gh-pr]: https://help.github.com/articles/using-pull-requests/
[rm-branch]: https://help.github.com/articles/deleting-unused-branches/
[rm-fork]: https://help.github.com/articles/deleting-a-repository/

Testing

	Continuous integration status for Linux and macOS: [![Build Status on Travis](https://travis-ci.org/bats-core/bats-core.svg?branch=ci-configs)](https://travis-ci.org/bats-core/bats-core)

	Continuous integration status for Windows: [![Build status on AppVeyor](https://ci.appveyor.com/api/projects/status/tokwm9t9jp5fe7af?svg=true)](https://ci.appveyor.com/project/bats-core/bats-core)

Coding conventions

	[Formatting](#formatting)

	[Naming](#naming)

	[Variable and parameter declarations](#variable-and-parameter-declarations)

	[Command substitution](#command-substitution)

	[Conditions and loops](#conditionals-and-loops)

	[Gotchas](#gotchas)

Formatting

	Keep all files 80 characters wide.

	Indent using two spaces.

	Enclose all variables in double quotes when used to avoid having them
interpreted as glob patterns (unless the variable contains a glob pattern)
and to avoid word splitting when the value contains spaces. Both scenarios
can introduce errors that often prove difficult to diagnose.
- **This is especially important when the variable is used to generate a

glob pattern**, since spaces may appear in a path value.

	If the variable itself contains a glob pattern, make sure to set
IFS=$’n’ before using it so that the pattern itself and any matching
file names containing spaces are not split apart.

	Exceptions: Quotes are not required within math contexts, i.e. (()) or
$(()), and must not be used for variables on the right side of the =~
operator.

	Enclose all string literals in single quotes.
- Exception: If the string contains an apostrophe, use double quotes.

	Use quotes around variables and literals even inside of [[]] conditions.
- This is because strings that contain ‘[‘ or ‘]’ characters may fail to

compare equally when they should.

	Exception: Do not quote variables that contain regular expression patterns
appearing on the right side of the =~ operator.

	Only quote arguments to the right of =~ if the expression is a literal
match without any metacharacters.

The following are intended to prevent too-compact code:

	Declare only one item per declare, local, export, or readonly call.
- _Note:_ This also helps avoid subtle bugs, as trying to initialize one

variable using the value of another declared in the same statement will
not do what you may expect. The initialization of the first variable will
not yet be complete when the second variable is declared, so the first
variable will have an empty value.

	Do not use one-line if, for, while, until, case, or select
statements.

	Do not use && or || to avoid writing if statements.

	Do not write functions entirely on one line.

	For case statements: put each pattern on a line by itself; put each command
on a line by itself; put the ;; terminator on a line by itself.

Naming

	Use snake_case for all identifiers.

Function declarations

	Declare functions without the function keyword.

	Strive to always use return, never exit, unless an error condition is
severe enough to warrant it.
- Calling exit makes it difficult for the caller to recover from an error,

or to compose new commands from existing ones.

Variable and parameter declarations

	Gotcha: Never initialize an array on the same line as an export or
declare -g statement. See [the Gotchas section](#gotchas) below for more
details.

	Declare all variables inside functions using local.

	Declare temporary file-level variables using declare. Use unset to remove
them when finished.

	Don’t use local -r, as a readonly local variable in one scope can cause a
conflict when it calls a function that declares a local variable of the same
name.

	Don’t use type flags with declare or local. Assignments to integer
variables in particular may behave differently, and it has no effect on array
variables.

	For most functions, the first lines should use local declarations to
assign the original positional parameters to more meaningful names, e.g.:
```bash
format_summary() {


local cmd_name=”$1”
local summary=”$2”
local longest_name_len=”$3”




```
For very short functions, this _may not_ be necessary, e.g.:
```bash
has_spaces() {


[[ “$1” != “${1//[[:space:]]/}” ]]








### Command substitution


	If possible, don’t. While this capability is one of Bash’s core strengths,
every new process created by Bats makes the framework slower, and speed is
critical to encouraging the practice of automated testing. (This is especially
true on Windows, [where process creation is one or two orders of magnitude
slower][win-slow]. See [bats-core/bats-core#8][pr-8] for an illustration of
the difference avoiding subshells makes.) Bash is quite powerful; see if you
can do what you need in pure Bash first.


	If you need to capture the output from a function, store the output using
printf -v instead if possible. -v specfies the name of the variable into
which to write the result; the caller can supply this name as a parameter.


	If you must use command substituion, use $() instead of backticks, as it’s
more robust, more searchable, and can be nested.




[win-slow]: https://rufflewind.com/2014-08-23/windows-bash-slow
[pr-8]: https://github.com/bats-core/bats-core/pull/8

### Process substitution


	If possible, don’t use it. See the advice on avoiding subprocesses and using
printf -v in the Command substitution section above.


	Use wherever necessary and possible, such as when piping input into a while
loop (which avoids having the loop body execute in a subshell) or running a
command taking multiple filename arguments based on output from a function or
pipeline (e.g.  diff).


	Warning: It is impossible to directly determine the exit status of a process
substitution; emitting an exit status as the last line of output is a possible
workaround.




### Conditionals and loops


	Always use [[ and ]] for evaluating variables. Per the guideline under
Formatting, quote variables and strings within the brackets, but not
regular expressions (or variables containing regular expressions) appearing
on the right side of the =~ operator.




### Generating output


	Use printf instead of echo. Both are Bash builtins, and there’s no
perceptible performance difference when running Bats under the time builtin.
However, printf provides a more consistent experience in general, as echo
has limitations to the arguments it accepts, and even the same version of Bash
may produce different results for echo based on how the binary was compiled.
See [Stack Overflow: Why is printf better than echo?][printf-vs-echo] for
excruciating details.




[printf-vs-echo]: https://unix.stackexchange.com/a/65819

### Signal names

Always use upper case signal names (e.g. trap - INT EXIT) to avoid locale
dependent errors. In some locales (for example Turkish, see
[Turkish dotless i](https://en.wikipedia.org/wiki/Dotted_and_dotless_I)) lower
case signal names cause Bash to error. An example of the problem:

`bash
$ echo "tr_TR.UTF-8 UTF-8" >> /etc/locale.gen && locale-gen tr_TR.UTF-8 # Ubuntu derivatives
$ LC_CTYPE=tr_TR.UTF-8 LC_MESSAGES=C bash -c 'trap - int && echo success'
bash: line 0: trap: int: invalid signal specification
$ LC_CTYPE=tr_TR.UTF-8 LC_MESSAGES=C bash -c 'trap - INT && echo success'
success
`

### Gotchas


	If you wish to use command substitution to initialize a local variable, and
then check the exit status of the command substitution, you _must_ declare the
variable on one line and perform the substitution on another. If you don’t,
the exit status will always indicate success, as it is the status of the
local declaration, not the command substitution.


	To work around a bug in some versions of Bash whereby arrays declared with
declare -g or export and initialized in the same statement eventually go
out of scope, always export the array name on one line and initialize it the
next line. See:
- https://lists.gnu.org/archive/html/bug-bash/2012-06/msg00068.html
- ftp://ftp.gnu.org/gnu/bash/bash-4.2-patches/bash42-025
- http://lists.gnu.org/archive/html/help-bash/2012-03/msg00078.html


	[ShellCheck](https://www.shellcheck.net/) can help to identify many of these issues




## Open Source License

This software is made available under the [MIT License][osmit].
For the text of the license, see the [LICENSE][] file.

## Credits


	This guide was heavily written by BATS-core member [@mbland](https://github.com/mbland)




for [go-script-bash](https://github.com/mbland/go-script-bash), tweaked for [BATS-core][repohome]
- Table of Contents created by [gh-md-toc](https://github.com/ekalinin/github-markdown-toc)
- The [official bash logo](https://github.com/odb/official-bash-logo) is copyrighted
by the [Free Software Foundation](https://www.fsf.org/), 2016 under the [Free Art License](http://artlibre.org/licence/lal/en/)

[repoprojects]:   https://github.com/bats-core/bats-core/projects
[repomilestones]: https://github.com/bats-core/bats-core/milestones
[repoprs]:        https://github.com/bats-core/bats-core/pulls
[repoissues]:     https://github.com/bats-core/bats-core/issues
[repohome]:       https://github.com/bats-core/bats-core

[osmit]:          https://opensource.org/licenses/MIT

[gitterurl]:      https://gitter.im/bats-core/bats-core
[ircurl]:         https://kiwiirc.com/client/irc.freenode.net:+6697/#bats



            

          

      

      

    

  

    
      
          
            
  
	[ ] I have reviewed the [Contributor Guidelines][contributor].


	[ ] I have reviewed the [Code of Conduct][coc] and agree to abide by it




[contributor]: https://github.com/bats-core/bats-core/blob/master/docs/CONTRIBUTING.md
[coc]:         https://github.com/bats-core/bats-core/blob/master/docs/CODE_OF_CONDUCT.md



            

          

      

      

    

  

    
      
          
            
  # Releasing a new Bats version

These notes reflect the current process. There’s a lot more we could do, in
terms of automation and expanding the number of platforms to which we formally
release (see #103).

## Update docs/CHANGELOG.md

Create a new entry at the top of docs/CHANGELOG.md that enumerates the
significant updates to the new version.

## Bumping the version number

Bump the version numbers in the following files:


	.appveyor.yml


	contrib/rpm/bats.spec


	libexec/bats-core/bats


	package.json




Commit these changes (including the docs/CHANGELOG.md changes) in a commit
with the message Bats <VERSION>, where <VERSION> is the new version number.

Create a new signed, annotated tag with:

`bash
$ git tag -a -s <VERSION>
`

Include the docs/CHANGELOG.md notes corresponding to the new version as the
tag annotation, except the first line should be: Bats <VERSION> - YYYY-MM-DD
and any Markdown headings should become plain text, e.g.:

`md
### Added
`

should become:

`md
Added:
`

## Create a GitHub release

Push the new version commit and tag to GitHub via the following:

`bash
$ git push --follow-tags
`

Then visit https://github.com/bats-core/bats-core/releases, and:


	Click Draft a new release.


	Select the new version tag.


	Name the release: Bats <VERSION>.


	Paste the same notes from the version tag annotation as the description,
except change the first line to read: Released: YYYY-MM-DD.


	Click Publish release.




For more on git push –follow-tags, see:


	[git push –follow-tags in the online manual][ft-man]


	[Stack Overflow: How to push a tag to a remote repository using Git?][ft-so]




[ft-man]: https://git-scm.com/docs/git-push#git-push—follow-tags [https://git-scm.com/docs/git-push#git-push---follow-tags]
[ft-so]: https://stackoverflow.com/a/26438076

## NPM

npm publish. Pretty easy!

For the paranoid, use npm pack and install the resulting tarball locally with
npm install before publishing.

## Homebrew

The basic instructions are in the [Submit a new version of an existing
formula][brew] section of the Homebrew docs.

[brew]: https://github.com/Homebrew/brew/blob/master/docs/How-To-Open-a-Homebrew-Pull-Request.md#submit-a-new-version-of-an-existing-formula

An example using v1.1.0 (notice that this uses the sha256 sum of the tarball):

```bash
$ curl -LOv https://github.com/bats-core/bats-core/archive/v1.1.0.tar.gz
$ openssl sha256 v1.1.0.tar.gz
SHA256(v1.1.0.tar.gz)=855d8b8bed466bc505e61123d12885500ef6fcdb317ace1b668087364717ea82

Add the –dry-run flag to see the individual steps without executing.
$ brew bump-formula-pr

–url=https://github.com/bats-core/bats-core/archive/v1.1.0.tar.gz –sha256=855d8b8bed466bc505e61123d12885500ef6fcdb317ace1b668087364717ea82


```
This resulted in https://github.com/Homebrew/homebrew-core/pull/29864, which was
automatically merged once the build passed.

## Alpine Linux

An example using v1.1.0 (notice that this uses the sha512 sum of the Zip file):

`bash
$ curl -LOv https://github.com/bats-core/bats-core/archive/v1.1.0.zip
$ openssl sha512 v1.1.0.zip
SHA512(v1.1.0.zip)=accd83cfec0025a2be40982b3f9a314c2bbf72f5c85daffa9e9419611904a8d34e376919a5d53e378382e0f3794d2bd781046d810225e2a77812474e427bed9e
`

After cloning alpinelinux/aports, I used the above information to create:
https://github.com/alpinelinux/aports/pull/4696

Note: Currently users must enable the edge branch of the community repo
by adding/uncommenting the corresponding entry in /etc/apk/repositories.

## Announce

It’s worth making a brief announcement like [the v1.1.0 announcement via
Gitter][gitter]:

[gitter]: https://gitter.im/bats-core/bats-core?at=5b42c9a57b811a6d63daacb5

```
v1.1.0 is now available via Homebrew and npm:
https://github.com/bats-core/bats-core/releases/tag/v1.1.0

It’ll eventually be available in Alpine via the edge branch of the community
repo once alpinelinux/aports#4696 gets merged. (Check /etc/apk/repositories to
ensure this repo is enabled.)
```



            

          

      

      

    

  

    
      
          
            
  # Docker Usage Guide


	[Docker Usage Guide](#docker-usage-guide)
* [Basic Usage](#basic-usage)
* [Docker Gotchas](#docker-gotchas)
* [Extending from the base image](#extending-from-the-base-image)




## Basic Usage

To build and run bats’ own tests:
```bash
$ git clone https://github.com/bats-core/bats-core.git
Cloning into ‘bats-core’…
remote: Counting objects: 1222, done.
remote: Compressing objects: 100% (53/53), done.
remote: Total 1222 (delta 34), reused 55 (delta 21), pack-reused 1146
Receiving objects: 100% (1222/1222), 327.28 KiB | 1.70 MiB/s, done.
Resolving deltas: 100% (661/661), done.

$ cd bats-core/
$ docker build –tag bats:latest .
…
$ docker run -it bats:latest –formatter tap /opt/bats/test
```

To mount your tests into the container, first build the image as above. Then, for example with bats:
`bash
$ docker run -it -v "$PWD:/opt/bats" bats:latest /opt/bats/test
`
This runs the test/ directory from the bats-core repository inside the bats Docker container.

For test suites that are intended to run in isolation from the project (i.e. the tests do not depend on project files outside of the test directory), you can mount the test directory by itself and execute the tests like so:

`bash
$ docker run -it -v "$PWD/test:/test" bats:latest /test
`

## Docker Gotchas

Relying on functionality provided by your environment (ssh keys or agent, installed binaries, fixtures outside the mounted test directory) will fail when running inside Docker.

–interactive/-i attaches an interactive terminal and is useful to kill hanging processes (otherwise has to be done via docker stop command). –tty/-t simulates a tty (often not used, but most similar to test runs from a Bash prompt). Interactivity is important to a user, but not a build, and TTYs are probably more important to a headless build. Everything’s least-surprising to a new Docker use if both are used.

## Extending from the base image

Docker operates on a principle of isolation, and bundles all dependencies required into the Docker image. These can be mounted in at runtime (for test files, configuration, etc). For binary dependencies it may be better to extend the base Docker image with further tools and files.

```dockerfile
FROM bats

	RUN
	apk –no-cache –update add openssh


```



            

          

      

      

    

  

    
      
          
            
  Here are the docs of following versions:


	[v1.2.0](../../v1.2.0/README.md)


	[v1.1.0](../../v1.1.0/README.md)


	[v1.0.2](../../v1.0.2/README.md)


	[v0.4.0](../../v0.4.0/README.md)


	[v0.3.1](../../v0.3.1/README.md)


	[v0.2.0](../../v0.2.0/README.md)


	[v0.1.0](../../v0.1.0/README.md)






            

          

      

      

    

  

    
      
          
            
  # Examples

This directory contains example .bats files.
See the [bats-core wiki][examples] for more details.

[examples]: (/bats-core/bats-core/wiki/Examples)



            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/minus.png





_static/plus.png





_static/file.png





